A facile one-pot synthesis of 1,1-bis(alkylmercapto)-2perfluoroalkylsulphonyl ethylenes and the structure of $CF_3SO_2CH = \overline{CS(CH_2)_3S}$

Shi-Zheng Zhu

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032 (China)

(Received March 1992; accepted May 13, 1992)

Abstract

1,1-Bis(alkylmercapto)-2-perfluoroalkylsulphonyl ethylenes, $R_FSO_2CH=C(SR)_2$ and $R_FSO_2CH=\overline{CS(CH_2)_n}S$, have been prepared by the condensation of carbon disulphide and methyl perfluoroalkylsulphone, $R_FSO_2CH_3$, with subsequent alkylation. The X-ray structure analysis of $CF_3SO_2CH=\overline{CS(CH_2)_n}S$ is presented.

Introduction

Ketene dithioacetals and their derivatives are versatile compounds and easily accessible [1]. In particular, functionalised ketene dithioacetals are widly used in organic synthesis, since they can serve as useful intermediates and undergo many organic transformations [2]. They are generally prepared by the base-induced condensation of activated methylene compounds with carbon disulphide followed by alkylation of the dithiolate anion [1, 3]. In these reactions a hindered base such as sodium 2,6-di(t-butyl)-4-methylphenoxide, potassium t-butyloxide or lithium dialkylamide is used [4] (see Scheme 1).

Results and discussion

We report here the use of methylmagnesium chloride, CH_3MgCl , as a base for the condensation of CS_2 and $R_FSO_2CH_3$ to prepare the title compounds, $R_FSO_2CH=C(SMe_2)_2$ (2) and $R_FSO_2CH=\overline{CS(CH_2)_nS}$ (3). To the best of our knowledge, these compounds have not been reported to date.

$$R_{F}SO_{2}CH_{3} + CS_{2} \xrightarrow{1. CH_{3}MgCl/THF}} R_{F}SO_{2}CH = C(SCH_{3})_{2} \qquad (2)$$

$$R_{F}SO_{2}CH_{3} + CS_{2} \xrightarrow{1. CH_{3}MgCl/THF}} R_{F}SO_{2}CH = CS(CH_{2})_{n}S \qquad (3)$$

$$R_{F} = CF_{3}, n = 2, 3a; n = 3, 3b;$$

$$R_{F} = C_{4}F_{9}, n = 2, 3a; n = 3, 3b;$$

$$R_{F} = C_{4}F_{9}, n = 2, 3c)$$

Methyl perfluoroalkylsulphone (1) was deprotonated by means of 2 equiv. of Grignard reagent. The methane formed was spontaneously evolved. Reaction of the resulting carbanion with excess carbon disulphide gave a dithiolate, which was alkylated by MeI or $Br(CH_2)_nBr$ to form the expected products 2 or 3. The yields of 2 or 3 were 73–78%.

Under similar reaction conditions, benzyl trifluoromethylsulphone, $C_6H_5CH_2SO_2CF_3$ (4), can also react with CS_2 and then be alkylated by $Br(CH_2)_3Br$ to give $CF_3SO_2CPh = \overline{CS}(CH_2)_3\overline{S}$, (5). The yield, however, was only 25% which may be explained by the lower reactivity of the $CF_3SO_2\overline{CHC_6H_5}$ anion due to steric hindrance and resonance stability.

$$\begin{array}{ccc} C_{6}H_{5}CH_{2}SO_{2}CF_{3} + CS_{2} & \xrightarrow{1. CH_{3}MgCl/THF} \\ (4) & CF_{3}SO_{2}CPh = CS(CH_{2})_{3}S \\ \end{array}$$

The results obtained are summarised in Table 1. All these new products were characterised by microanalysis, IR, NMR and mass spectrometry. They were stable and could be stored in a closed flask at room temperature without decomposition.

Recrystallisation of products 2 and 3 from acetone and acetonitrile (1:1) gave fine yellow crystals. X-Ray structural analysis of 3b (see Fig. 1) showed that O(1), S(1), C(1), C(3), S(2) and S(3) are planar. The bond distances C(1)–S(1), C(3)–S(2) and C(3)–S(3) (respectively, 1.711(5), 1.741(4) and

TABLE	1
-------	---

Substrate 1	RX	Products 2 or 3	Yield (%)ª	M.p. (°C)
1a	Mel	2a	76	76
la	$Br(CH_2)_2Br$	3a	78	86
la	$Br(CH_2)_3Br$	3b	75	88
1b	Mel	2b	73	91-93
1b	$Br(CH_2)_2Br$	3c	75	93
4	Br(CH ₂) ₃ Br	5	25	126128

alsolated yield based on 1 or 4.

Fig. 1. The structure of compound 3b.

Scheme 2.

1.743(4) Å) are shorter than those of C(2)-S(1), C(4)-S(2) and C(6)-S(3) (1.823(7), 1.804(5) and 1.814(5) Å). The normal C-S bond length is 1.81 Å [5]. From these data, we propose a delocalised structure for compound **3a**, (see Scheme 2).

In conclusion, the present method provides a facile synthesis of 1,1bis(alkylmercapto)-2-perfluoroalkylsulphonyl ethylenes.

Experimental

Melting points were measured on a Thiele apparatus and are reported uncorrected. THF was purified before use. ¹H NMR and ¹⁹NMR spectra were recorded on a Varian 360L instrument using Me_4Si and CF_3Cl as internal and external standards, respectively. IR spectra were obtained with an IR-440 Shimadzu spectrophotometer. Low-resolution mass spectra were obtained on a Finnigan GC–MS 4021 instrument. Methyl perfluoroalkylsulphone (1) and benzyl trifluoromethylsulphone (4) were prepared according to literature methods [6].

The general synthetic procedure was as follows. Methylmagnesium chloride in THF (1 N, 20 ml) was injected into a solution of $CF_3SO_2CH_3$ (1.48 g, 0.01 mol) in dry THF (10 ml) at 0 °C; after stirring for 2 h, CS_2 (1.52 g, 0.02 mol) was added using a syringe at 0 °C. The reaction mixture was warmed to 20 °C, then stirred for 4 h. MeI (3 g, 0.021 mol) was added and the mixture stirred for another 4 h. The solvent was evaporated and the residue was sublimed under vacuum to give crude product 2a (2 g, yield 76%). Recrystallization from $(CH_3)_2CO$ and CH_3CN (1:1) gave pure 2a.

1,1-Di(methylmercapto)-2-trifluoromethylsulphonyl ethylene, $CF_3SO_2CH = C(SCH_3)_2$ (**2a**): IR (KCl) (cm⁻¹): 3075 (m); 2998 (w); 2990 (w); 1646 (w); 1460 (s); 1427 (m); 1342 (s); 1320 (m); 1263 (m); 1196 (s); 983 (m); 923 (m); 845 (m); 697 (s); 582 (s); 505 (s). ¹H NMR, $(CD_3)_2CO$, 60 MHz, δ : 5.84 (s, 1H); 2.72 (s, 3H); 2.65 (s, 3H) ppm. ¹⁹F NMR δ : -79.3 (s, 3F) ppm. MS(m/z) (EI): 253 (M+H, 8.3); 252 (M⁺, 22.7); 238 (M+H-CH₃, or M⁺-O, 3.4); 183 (M⁺-CF₃, 42.4); 119 (M⁺-CF₃SO₂, 20.6); 104 (M⁺-CF₃SO₂-CH₃, 100); 89 (SO₂CH=C⁺, 18.4); 73 (SOCH=C⁺, 41.5); 69 (CF₃⁺, 36.1); 47 (SCH₃⁺, 12.7). Analysis: C₅H₇F₃O₂S₃ requires: C, 23.81; H, 2.78; F, 22.62%. Found: C, 23.95; H, 2.80; F, 22.38%.

(1,3-Dithiolane-2-ylidene)methyltrifluoromethylsulphone, $CF_3SO_2CH = \overline{CS(CH_2)_2S}$ (**3a**): IR (cm⁻¹): 3044 (m); 2941 (w); 1670 (w); 1486 (s); 1480 (s); 1338 (s); 1325 (s); 1286 (s); 1327 (s); 1198 (vs); 1151 (s); 1116 (vs); 928 (s); 841 (s); 711 (s); 590 (s); 508 (s). ¹H NMR δ : 6.54 (s, 1H); 3.74 (s, 4H) ppm. ¹⁹F NMR δ : -79.6 (s, 3F) ppm. MS(m/z) (EI): 250 (M⁺, 14.5); 181 (M⁺ - CF₃, 67.0); 133 (CF₃SO₂⁺, 2.6); 117 (M⁺ - CF₃SO₂ or CF₃SO⁺, 4.5); 89 (SO₂CH=C⁺, 100); 77 (SO₂CH⁺, 1.7); 69 (CF₃⁺, 14.1); 45 (SCH⁺, 51.0). MS(m/z) (CI): 251 (M⁺H, 100); 250 (M⁺, 47.0); 181 (M⁺ - CF₃, 30.0); 167 (M⁺ - CF₃ - CH₂, 10.1); 165 (M⁺ - CF₃ - O, 5.8); 133 (CF₃SO₂⁺, 1.8); 118 (CF₃SOH⁺, 22.8); 117 (CF₃SO⁺ or M⁺ - CF₃SO₂, 1.7). Analysis: C₅H₅F₃O₂S₃ requires: C, 24.00; H, 2.00; F, 22.80%. Found: C, 23.95; H, 2.40; F, 22.78%.

(1,3-Dithiolcyclohexylidene)methyltrifluoromethylsulphone, $CF_3SO_2-CH=\overline{CS(CH_2)_3S}$ (**3b**): IR (cm⁻¹): 3020 (w); 2880 (w); 1642 (w); 1464 (s); 1418 (s); 1340 (vs); 1239 (m); 1184 (vs); 1108 (s); 930 (s); 820 (s); 728 (m); 591 (s); 558 (m); 505 (s). ¹H NMR δ : 6.43 (s, 1H); 3.23 (m, 4H); 2.33 (m, 2H) ppm. ¹⁹F NMR δ : -79.0 ppm. MS(M/z) (EI): 265 (M+H, 23.91); 264 (M⁺, 68.01); 195 (M⁺ - CF₃, 98.4); 179 (M⁺ - CF₃ - O, 5.2); 133 (CF₃SO₂⁺, 3.0); 131 (M⁺ - CF₃SO₂⁺, 31.1); 121 (SO₂CH=C=S⁺, 4.6); 89 (SO₂CH=C⁺, 54.9); 73 (SOCH=C⁺, 21.9); 69 (CF₃⁺, 46.0); 45 (SCH⁺, 100). Analysis: C₆H₇F₃O₂S requires: C, 27.27; H, 2.65; F, 21.57%. Found: C, 27.18; H, 2.39; F, 21.19%.

1,1-Bis(methylmercapto)-2-perfluorobutanesulphonyl ethylene, C_4F_9 -SO₂CH=C(SCH₃)₂ (**2b**): IR (cm⁻¹): 3042 (m); 2993 (w); 2990 (w); 1645 (w); 1459 (s); 1430 (m); 1340 (s); 1320 (m); 1200–1100 (vs); 985 (m); 850 (m); 700 (s); 585 (s); 502 (s). ¹H NMR δ : 2.75 (s, 3H); 2.68 (s, 3H); 5.85 (s, 1H) ppm. ¹⁹F NMR δ : -79.3 (s, 3F); -108.4 (m, 4F); -120.0 (m, 2F); -124.2 (m, 2F) ppm. MS(m/z) (EI): 403 (M+H, 4.83); 402 (M⁺, 12.33); 387 (M⁺ - CH₃, 4.13); 386 (M⁺ - O, 2.76); 267 (C₄F₉SO⁺, 3.46); 219 (C₄F₉⁺, 7.63); 119 (M⁺ - C₄F₉SO₂ or C₂F₃⁺, 46.79); 104 (M⁺ - C₄F₉ - SO₂ - CH₃, 100); 89 (SO₂CH=C⁺, 17.38); 69 (CF₃⁺, 44.10); 47 (SCH₃⁺, 18.29). Analysis: C₈H₇F₉O₂S₃ requires: C, 23.88; H, 1.74; F, 42.54%. Found: C, 23.73; H, 1.68; F, 43.01%.

(1,3-Dithiolane-2-ylidene)methylperfluorobutylsulphone, $C_4F_9SO_2CH = -CS(CH_2)_2S$ (3c): ¹H NMR δ : 3.70 (s, 4H); 6.44 (s, 1H) ppm. ¹⁹F NMR δ : -79.5 (s, 3F); -108.5 (m, 2F); -120.0 (m, 2F); -124.3 (s, 2F) ppm. Analysis: $C_8H_5F_9O_2S_3$ requires: C, 24.00; H, 1.25; F, 42.75%. Found: C, 24.13; H, 1.38; F, 41.98%.

(1,3-Dithiocyclohexylidenephenyl)methyltrifluoromethylsuphone, CF₂- $SO_2CC_6H_5 = \overline{CS(CH_2)_3S}$ (5): IR (cm⁻¹): 3020 (w); 2900 (w); 2850 (w); 1600 (w); 1490 (m); 1450 (m); 1350 (s); 1200 (vs); 1105 (s); 1030 (m); 950 (m); 760 (s); 695 (s); 640 (m); 580 (m); 520 (m). ¹H NMR δ : 2.15 (m, 2H); 3.03 (m, 4H); 7.2–7.5 (m, 5H) ppm. ¹⁹F NMR δ : -78.8 (s, 3F) ppm. MS(m/z) (EI): 341 (M+H, 1.39); 3.40 (M⁺, 3.40); 312 (M⁺ - C₂H₂, 0.93); 298 ($M^+ - C_3H_6$, 1.41); 254 ($M^+ - CSC_3H_6$, 2.24); 238 ($CF_3SOCC_6H_5 = S$, 0.25); 223 $(M^+ - CF_3SO, 0.86)$; 207 $(M^+ - CF_3SO_2, 7.37)$; 180 $(M^+ - CF_3SO_2, 7.37)$; $CF_3SO_2 - C_2H_3$, 100); 178 $(M^+ - C_6H_5 - CF_3O, 27.83);$ $(M^{+} -$ 165 $CF_{3}SO_{2}-C_{3}H_{6}$ or $CF_{3}-SO_{2}S$, 16.69); 121 ($C_{6}H_{5}CS^{+}$, 4.74); 77 ($C_{6}H_{5}^{+}$, 0.90). Analysis: C₁₂H₁₁F₃O₂S₃ requires: C, 42.35; H, 3.24; F, 16.76%. Found: C, 42.07; H, 3.04; F, 16.97%.

Crystal data

 $C_6H_7O_2F_3S_3$, M=264.31, monoclinic; space group P2₁/c; a=11.247(1)Å, b=8.957(1) Å, c=11.271(7) Å, $\beta=113.13(2)$, V=1044.2 Å³, Z=4; $D_c=1.681$ g cm⁻³, F(000)=536, $\mu(MoK\alpha)=6.96$ cm⁻¹; crystal dimensions $0.2\times0.2\times0.1$ mm. Intensity data were collected at 20 °C with an Enraf-Nonius CAD4 diffractometer using graphite-monochromated MOK α radiation. 2087 unique reflections were measured in the range 2° < 2 θ < 50 with 0 < h < 14, 0 < k < 11, -14 < l < 14. LP and absorption corrections were applied to the intensity data. The structure was solved by direct methods using MULTAN 11/82. The positions of the H atoms were defined via geometric calculation. All positional parameters and anisotropic thermal parameters for non-H atoms were refined by a full-matrix least-squares technique. Final *R*, *Rw* and *S* values were 0.038, 0.049, 1.15, respectively, for 1492 observed reflections ($F^2 > 3\sigma(F^2)$). All computations were performed on a MICROVAX II computer with SDP, MULTAN 11/82 and ORTEP programs. Scattering factors were

TABLE 2					
Compound	3b :	bond	distances	in	Ångstroms

Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
S(1)	0(1)	1.426(4) ^a	S(3)	C(6)	1.814(5)	C(4)	H(2)	0.950(4)
S(1)	0(2)	1.428(3)	F(1)	C(2)	1.315(7)	C(4)	H(3)	0.950(6)
S(1)	C(1)	1.711(5)	F(2)	C(2)	1.310(7)	C(5)	C(6)	1.533(7)
S(1)	C(2)	1.823(7)	F(3)	C(2)	1.299(7)	C(5)	H(4)	0.950(5)
S(2)	C(3)	1.741(4)	C(1)	C(3)	1.342(6)	C(5)	H(5)	0.950(5)
S(2)	C(4)	1.804(5)	C(1)	H(1)	0.951(4)	C(6)	H(6)	0.951(5)
S(3)	C(3)	1.743(4)	C(4)	C(5)	1.527(7)	C(6)	H(7)	0.951(5)

^aNumbers in parentheses are estimated standard deviations for the last digits.

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
0(1)	S(1)	0(2)	120.0(2) ^a	S(1)	C(2)	F(3)	111.0(4)	C(4)	C(5)	C(6)	113.5(4)
0(1)	S(1)	C(1)	112.6(3)	F(1)	C(2)	F(2)	108.6(5)	C(4)	C(5)	H(4)	108.5(5)
0(1)	S(1)	C(2)	104.6(3)	F(1)	C(2)	F(3)	108.9(6)	C(4)	C(5)	H(5)	108.5(5)
0(2)	S(1)	c(1)	109.2(3)	F(2)	C(2)	F(3)	108.0(5)	C(6)	C(5)	H(4)	108.4(5)
0(2)	S(1)	C(2)	104.3(3)	S(2)	C(3)	S(3)	118.3(3)	C(6)	C(5)	H(5)	108.4(5)
C(I)	$\mathbf{S}(1)$	C(2)	104.6(3)	S(2)	C(3)	c(1)	125.1(3)	H(4)	C(5)	H(5)	109.5(5)
C(3)	S(2)	C(4)	101.2(2)	S(3)	C(3)	C(1)	116.6(3)	S(3)	C(6)	C(5)	115.2(3)
C(3)	S(3)	C(6)	101.9(2)	S(2)	C(4)	C(5)	113.0(3)	S(3)	C(6)	H(6)	108.0(4)
S(1)	C(1)	C(3)	125.5(3)	S(2)	C(4)	H(2)	108.6(4)	S(3)	C(6)	Н(7)	108.0(4)
S(1)	C(1)	H(1)	117.3(4)	S(2)	C(4)	H(3)	108.6(4)	C(5)	C(6)	H(6)	108.0(4)
C(3)	C(1)	H(1)	117.3(4)	C(5)	C(4)	H(2)	108.6(5)	C(5)	C(6)	H(7)	108.0(4)
S(1)	C(2)	F(1)	110.0(4)	C(5)	C(4)	H(3)	108.6(4)	H(6)	C(6)	H(7)	109.5(5)
S(1)	C(2)	F(2)	110.5(5)	H(2)	C(4)	H(3)	109.4(5)				
"Numbers	in parenthe	ses are esti	mated standa	rd deviation	s for the las	st digits.					

TABLE 3 Compound **3b** bond angles in degrees

Atom	x	y	z	$B(\mathrm{\AA}^2)^{\mathrm{a}}$
S(1)	0.2327(1)	0.3715(1)	0.7651(1)	3.57(2)
S(2)	0.2884(1)	0.0559(2)	0.6380(1)	4.44(3)
S(3)	0.3225(1)	-0.0821(2)	0.8909(1)	3.89(2)
F(1)	0.0235(3)	0.3726(6)	0.8087(3)	9.2(1)
F(2)	0.0141(4)	0.5074(5)	0.6495(4)	9.5(1)
F(3)	0.0023(4)	0.2728(5)	0.6304(4)	9.3(1)
0(1)	0.2564(3)	0.3742(4)	0.6498(3)	4.77(8)
0(2)	0.2785(4)	0.4903(4)	0.8564(3)	5.47(9)
C(1)	0.2734(4)	0.2044(5)	0.8444(4)	3.33(9)
C(2)	0.0573(5)	0.3811(7)	0.7097(6)	5.9(2)
C(3)	0.2924(4)	0.0759(5)	0.7931(3)	2.96(9)
C(4)	0.2651(5)	-0.1428(6)	0.6146(4)	4.2(1)
C(5)	0.3824(5)	-0.2329(6)	0.7008(5)	4.6(1)
C(6)	0.4353(5)	-0.1844(6)	0.8426(5)	4.3(1)
H(1)	0.283	0.202	0.932	4.3*
H(2)	0.248	-0.165	0.527	5.5*
H(3)	0.193	-0.171	0.633	5.5*
H(4)	0.449	-0.221	0.670	6.0*
H(5)	0.358	-0.335	0.696	6.0*
H(6)	0.461	-0.272	0.895	5.6*
H(7)	0.509	-0.123	0.858	5.6*

Compound 3b: positional parameters and their estimated standard deviations

^aStarred atoms were refined isotropically.

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3)[a2B(1,1)+b2B(2,2)+c2B(3,3)+ab(\cos \gamma)B(1,2)+ac(\cos \beta)B(1,3)+bc(\cos \alpha)B(2,3)].$

taken from *International Tables for X-Ray Crystallography* (1974). Full details of the crystallographic data thus obtained are given in Tables 2–4.

Acknowledgement

We thank Shanghai Natural Science & Technology Foundation for financial support of this work.

References

TABLE 4

- 1 M. Kolb, Synthesis, (1990) 171.
- 2 K. Dieter, Tetrahedron, 42 (1986) 3029.
- 3 (a) D. Villemin and A. B. Alloum, Synthesis, (1991) 301; (b) J. A. Goodwin, I. M. Y. Kwok and B. J. Wakefield, Synthesis, (1990) 991.
- 4 (a) E. J. Corey and R. H. K. Chen, *Tetrahedron Lett.*, (1973) 3817; (b) K. T. Konen, P. E. Preffer and L. S. Silbert, *Tetrahedron*, 32 (1976) 2507; (c) D. C. Diffmer, H. F. Simmons and R. D. Vest, J. Org. Chem., 29 (1964) 497.
- 5 B. Abrahams, Quart. Rev., Chem. Soc., 10 (1956) 607.
- 6 R. J. Koshar and R. A. Mitsch, J. Org. Chem., 38 (1973) 3358.